Астрономия, звездные скопления
Сайт по астрономии: сайт для тех, кто любит небо

Меню
Главная
События
Статьи
Форум
Фото
Сайт по астрономии: сайт для тех, кто любит небо
     Меню странички:

Кварковая звезда
Красный карлик
Белые карлики
Нейтронная звезда
Чёрные дыры
Перейти на страницу 1 2 3 4

Кварковая звезда

     Кварковая звезда — гипотетическое астрономическое тело, состоящее из так называемой «кварковой материи». Считается, что такие звёзды занимают промежуточное место между нейтронными звёздами и чёрными дырами. Кварковые звёзды могут оказаться настолько плотными, что излучённый ими свет может двигаться по орбите вокруг такой звезды. Кроме того, пока не ясно, является ли переход вещества в кварковое состояние обратимым. То есть перейдёт ли кварковая материя в нейтронную при уменьшении давления?
     В настоящее время существование таких звёзд считается недоказанным. Однако предполагается, что объект RX G1856.5–3754 может являться кварковой звездой. Этот объект был изначально открыт как нейтронная звезда, находящаяся на расстоянии 150 световых лет, однако в 2002 году Дж. Дрейк (J. J. Drake) с коллегами с помощью уточнённых данных, полученных телескопом «Чандра», предположил, что тело может являться кварковой звездой, удалённой на расстояние около 400 световых лет, с радиусом 3,8–8,2 км (против 12 км у нейтронной). Ещё одним кандидатом в кварковые звёзды считается быстровращающийся пульсар XTE J1739–285.

     Также учёные из канадского университета Калгари предполагают, что обнаруженная в 18 сентября 2006 года яркая сверхновая SN 2006gy возможно является кварковой звездой.

Вернуться к Меню


Красный карлик

     Согласно диаграмме Герцшпрунга — Рассела, красный карлик — маленькая и относительно холодная звезда главной последовательности, имеющая спектральный класс М или верхний К.
     Красные карлики довольно сильно отличаются от других звёзд. Диаметр и масса красных карликов не превышает трети солнечной (нижний предел массы — 0,08 солнечной, за этим идут коричневые карлики). Температура поверхности красного карлика достигает 3,500 К. Звезды этого типа испускают очень мало света, иногда в 10,000 раз меньше Солнца. Из-за медленной скорости сгорания водорода, красные карлики имеют очень большую продолжительность жизни — от десятков миллиардов до нескольких триллионов лет. В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива. Но с момента Большого взрыва прошло ещё недостаточно времени, чтобы красные карлики смогли сойти с главной последовательности.
     Тот факт, что красные карлики остаются на главной последовательности, в то время как другие звезды сходят с неё, позволяет определять возраст звёздных скоплений путём нахождения массы при которой звёзды вынуждены сойти с главной поверхности. Кроме того, тот факт, что на данный момент не найдено ни одного красного карлика вне главной последовательности, свидетельствует о том, что Вселенная имеет конечный возраст.
     Красные карлики — самые распространённые объекты звёздного типа во вселенной. Проксима Центавра, ближайшая звезда к Солнцу — красный карлик (спектральный класс M5,5Ve; звёздная величина 11,0m), как и двадцать из следующих тридцати ближайших звёзд. Однако из-за их низкой яркости, они мало изучены.
     Одна из загадок астрономии — слишком малое количество красных карликов совсем не содержащих металлов. Согласно модели Большого взрыва первое поколение звёзд должно было содержать только лишь водород, и гелий (и совсем небольшое кол-во лития). Если в числе этих звёзд были красные карлики, то они должны наблюдаться сегодня, чего не происходит. Общепринятое объяснение заключается в том, что звезды с малой массой не могут сформироваться без тяжелых элементов. Так как в лёгких звёздах протекают термоядерные реакции с участием водорода в присутствии металлов, то ранняя протозвезда с малой массой, лишённая металлов, просто не в состоянии «зажечься», и вынуждена оставаться газовым облаком до тех пор, пока не получит больше материи. Всё это служит поддержкой теории о том, что первые звёзды были очень массивными и вскоре погибли, выбросив большое количество металлов, необходимых для формирования легких звезд.
     Красные карлики в плане термоядерных реакций «экономны» — нуклеосинтез в недрах этих звёзд проходит медленно (это связано с массой звезды, её размерами, et cetera). Поэтому жизненный цикл красного карлика раз в десять длиннее, чем, скажем, у Солнца. Если уж так сложилось,— возникла жизнь на какой-нибудь планете подле красного карлика, то возможность, что она будет развиваться — выше, чем у таких звёзд, как Солнце. Это связано с тем, что для развития жизни требуются миллионы лет эволюции. В плане своего развития красные карлики — самые стабильные звёзды.
     В 2005 году были обнаружены экзопланеты, вращающиеся вокруг красных карликов. По размеру одна из них сопоставима с Нептуном (около 17 масс Земли). Эта планета вращается на расстоянии всего в 6 миллионов километров от звезды, и поэтому должна иметь температуру поверхности около 150 °C, несмотря на низкую светимость звезды. В 2006 году была обнаружена планета земного типа. Она вращается вокруг красного карлика на расстоянии в 390 миллионов километров, и температура её поверхности составляет –220 °C.
     Поскольку красные карлики довольно тусклые, то эффективная земная орбита должна быть близкой к звезде. Но планета, расположенная близко к звезде становится постоянно обращённой к ней одной стороной. Данное явление называется спин-орбитальным резонансом. Оно может вызвать разницу температур на разных полушариях (ночном и дневном), поскольку на дневном полушарии всегда тепло (может быть — очень жарко), а на ночном температура может приближаться к абсолютному нулю. Это, в свою очередь, может вызвать сильные ветры в атмосфере планеты. Красные карлики во много крат активнее Солнца. Очень мощные вспышки могут быть губительными для возможной жизни на планете. Но магнитное поле планеты могло бы решить эту проблему — оно было бы барьером для радиации (как у Земли).
     Если мы ищем благоприятные для жизни планеты, то они должны обладать мощным магнитным полем для препятствования смертоносного излучения. Планета должна иметь атмосферу (желательно с кислородом) и жидкую воду. Орбита планеты должна быть круговой (эксцентриситет эллипса = 0), чтобы температура поверхности была более-менее постоянной.

Вернуться к Меню


Белые карлики

     Белые карлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара, лишённые собственных источников термоядерной энергии.
     Белые карлики представляют собой компактные звёзды с массами, сравнимыми с массой Солнца, но с радиусами в ~100 и, соответственно, светимостями в ~10 000 раз меньшими солнечной. Плотность белых карликов составляет порядка 106 г/см3, что почти в миллион раз выше плотности обычных звёзд главной последовательности. По численности белые карлики составляют по разным оценкам 3–10 % звёздного населения нашей Галактики.
     Как уже упоминалось, массы белых карликов составляют порядка солнечной, но размеры составляют лишь сотую (и даже меньше) часть солнечного радиуса, т. е. плотность вещества в белых карликах чрезвычайно высока и составляет г/см3. При таких плотностях электронные оболочки атомов разрушаются, и вещество представляет собой электронно-ядерную плазму, причём её электронная составляющая представляет собой вырожденный электронный газ.
     Для белых карликов, в отличие от звёзд главной последовательности и гигантов, не существует зависимость масса-светимость.
     для белых карликов существует верхний предел массы (предел Чандрасекара). Интересно, что для наблюдаемых белых карликов существует и аналогичный нижний предел: поскольку скорость эволюции звёзд пропорциональна их массе, то мы можем наблюдать как маломассивные белые карлики лишь остатки тех звёзд, которые успели проэволюционировать за время от начального периода звездообразования Вселенной до наших дней.
     Спектры белых карликов сильно отличаются от спектров звёзд главной последовательности и гигантов. Главная их особенность — небольшое число сильно уширенных линий поглощения, а некоторые белые карлики (спектральный класс DC) вообще не содержат заметных линий поглощения. Малое число линий поглощения в спектрах звёзд этого класса объясняется очень сильным уширением линий: только самые сильные линии поглощения, уширяясь, имеют достаточную глубину, чтобы остаться заметными, а слабые, из-за малой глубины, практически сливаются с непрерывным спектром.
     Особенности спектров белых карликов объясняются несколькими факторами. Во-первых, из-за высокой плотности белых карликов ускорение свободного падения на их поверхности составляет ~108 см/с2 (или ~1000 Км/с2), что, в свою очередь, приводит к малым протяжённостям их фотосфер, огромным плотностям и давлениям в них и уширению линий поглощения. Другим следствием сильного гравитационного поля на поверхности является гравитационное красное смещение линий в их спектрах, эквивалентное скоростям в несколько десятков км/с. Во-вторых, у некоторых белых карликов, обладающих сильными магнитными полями, наблюдаются сильная поляризация излучения и расщепление спектральных линий вследствие эффекта Зеемана.
     Температура поверхности молодых белых карликов — изотропных ядер звёзд после сброса оболочек, очень высока — более 2·105 K, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT).
     Температура поверхности наиболее горячих белых карликов — 7·104 K, наиболее холодных — ~5·103 K.
     Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.
     В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х гг. С. А. Каплан.

  1. Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к возникновению карликовых новых (звёзд типа U Gem (UG)) и новоподобных катастрофических переменных звёзд.

  2. Аккреция на белые карлики, обладающие сильным магнитным полем, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях поля вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).

  3. Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды.

  4. Достаточно длительная и интенсивная аккреция на массивный белый карлик приводит к превышению его массой предела Чандрасекара и гравитационному коллапсу, наблюдаемому как вспышка сверхновой типа Ia.

Вернуться к Меню


Нейтронная звезда

     Нейтронная звезда — астрономическое тело, один из конечных продуктов эволюции звёзд, состоит из нейтронной сердцевины и тонкой коры вырожденного вещества с преобладанием ядер железа и никеля.
     Нейтронные звёзды имеют очень малый размер — 10–20 км в диаметре, плотность вещества приближается к плотности атомного ядра (1016–1018 кг/м3). Массы большинства известных нейтронных звёзд близки к 1,4 массы Солнца (теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс). Самая массивная нейтронная звезда из открытых Vela X-1 имеет массу 1,88 солнечных масс. Силы тяготения в нейтронных звёздах уравновешиваются давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера.
     Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013 Гс. (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров.
     Нейтронные звёзды — одни из немногих астрономических объектов, которые были теоретически предсказаны до открытия наблюдателями. Ещё в 1934 году В. Бааде и Ф. Цвикки высказали предположение, что в результате взрыва сверхновой образуется нейтронная звезда. Но первое общепризнанное наблюдение нейтронной звезды состоялось только в 1968, с открытием пульсаров.

Вернуться к Меню


Чёрные дыры

     Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится, и сами нейтроны начнут обрушиться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.
     Существование чёрных дыр было предсказано общей теорией относительности. Согласно ОТО материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика делает возможным исключения из этого правила. Существование чёрных дыр во вселенной подтверждено и теоретически, и посредством наблюдений.
     Но, тем не менее, остаётся ряд открытых вопросов. Среди них: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?

Вернуться к Меню


Хостинг от uCoz